	Hall Ticket Number: Code No.: 1	1112 S	
	VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year I-Semester (Supplementary) Examinations, May/June-2016		
	Mathematics-I Time: 3 hours Note: Answer ALL questions in Part-A and any FIVE from Part-B	ks: 50	
	Part-A (15 Marks)		
	Define linearly independent and linearly dependent of vectors.	[1]	
	Define absolutely convergent and test whether the series $\sum \frac{(-1)^n}{n\sqrt{n}}$ converges absolutely or not.	[1]	
	Find the curvature of the circle $y = \sqrt{a^2 - x^2}$.	[1]	
	Expand $tan^{-1} x$ in powers of x upto three terms by using Taylor's series.	[1]	
	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{dy dx}{1+x^{2}+y^{2}}$.	[1]	
	Find the eigen values of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$	[2]	
	Test the convergence of the series $\sum \left(1 + \frac{1}{n^p}\right)^{n^{p+1}}$, $p > 0$.	[2]	
	Find the envelope of the family of straight lines $x\cos\alpha + y\sin\alpha = p$, where α is a parameter	[2]	
	Find the extremum value of $f(x) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$ at (2,0).	[2]	
0.	Evaluate $\int_0^4 \int_0^{x^2} e^{y/x} dy dx$.	[2]	
	Part-B (5 X 7=35 Marks)		
1.	a) Test the consistency of the following equations, and if they are consistent, solve them. 4x + 7y - 5z = 3, $9x - 11y + 5z = -111x - 9y + 7z = 5$, $3y + 10z = 23$.	[2]	
	b) Find the eigenvalues and the corresponding eigenvectors of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$	[3]	
2	a) Test the convergence of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \cdots$ b) Discuss the convergence of the series $\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \cdots$	[3] [4	
-1	a) Find the radius of curvature for the curve $r^n = a^n \cdot \cos n\theta$	[4	
,	b) Find the envelope of the family of lines given by, $y = mx + \sqrt{a^2m^2 + b^2}$, where m is a	L	
	parameter.	[3	

14. a) Expand $x^2y + 3y - 2$ in powers of (x-1) and (y+2) using Taylor's theorem. b) Find the minimum values of the function $f(x,y) = xy + \frac{9}{x} + \frac{3}{y}$.

[3] [4]

- 15. a) Evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{a}x} dy \ dx$ by changing the order of integration. [3]
 - b) Find the volume bounded by xy-plane the cylinder $x^2 + y^2 = 1$ and the plane x+y+z=3. [4]
- 16. a) If $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$, then show that the matrix A is diagonalizable. Hence, find P such that $P^{-1}AP$

is a diagonal matrix. [4]

- b) Test the convergence $1 + \frac{x}{2} + \frac{2!}{3^2} x^2 + \frac{3!}{4^3} x^3 + \dots$ [3]
- 17. Answer any **two** of the following: [7]
 - a) Find the radius of curvature for the curve $y^2(a-x) = x^2(a+x)$ at the origin.
 - b) If $x = e^u \cos v$, $y = e^u \sin v$, find $\frac{\partial (u,v)}{\partial (x,y)}$.
 - c) Find the volume of the solid bounded by the planes x = 0, y = 0, x+y+z = 1 and z = 0.
